BAV99L, SBAV99L

Dual Series Switching Diode

Features

- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (Each Diode)

Rating	Symbol	Value	Unit
Reverse Voltage	V_{R}	100	Vdc
Forward Current	I_{F}	215	mAdc
Peak Forward Surge Current	$\mathrm{I}_{\text {FM(surge) }}$	500	mAdc
Repetitive Peak Reverse Voltage	$\mathrm{V}_{\text {RRM }}$	100	V
Average Rectified Forward Current (Note 1)	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	715	mA
(averaged over any 20 ms period)			
Repetitive Peak Forward Current	$\mathrm{I}_{\text {FRM }}$	450	mA
Non-Repetitive Peak Forward Current	$\mathrm{I}_{\mathrm{FSM}}$		A
$\mathrm{t}=1.0$ us		2.0	
$\mathrm{t}=1.0 \mathrm{~ms}$			
$\mathrm{t}=1.0 \mathrm{~s}$		1.0	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 1) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	225	mW
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\text {日JA }}$	556	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Total Device Dissipation Alumina Substrate (Note 2) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	300	mW
Thermal Resistance, Junction-to-Ambient		$\mathrm{R}_{\text {日JA }}$	417
Junction and Storage	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Temperature Range			

1. $\mathrm{FR}-5=1.0 \times 0.75 \times 0.062 \mathrm{in}$.
2. Alumina $=0.4 \times 0.3 \times 0.024$ in 99.5% alumina.

ON Semiconductor ${ }^{\circledR}$

www.onsemi.com

CASE 318
SOT-23 STYLE 11
CATHODE/ANODE

MARKING DIAGRAM

A7 = Device Code
$\mathrm{M}=$ Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping †
BAV99LT1G	SOT-23 (Pb-Free)	$3,000 /$ Tape \& Reel
SBAV99LT1G	SOT-23 (Pb-Free)	$3,000 /$ Tape \& Reel
BAV99LT3G	SOT-23 (Pb-Free)	$10,000 /$ Tape \& Reel
SBAV99LT3G	SOT-23 (Pb-Free)	$10,000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

BAV99L, SBAV99L

OFF CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted) (Each Diode)

Characteristic	Symbol	Min	Max	Unit
Reverse Breakdown Voltage, $\left(\mathrm{l}_{(\mathrm{BR})}=100 \mu \mathrm{~A}\right)$	$\mathrm{V}_{\text {(BR) }}$	100	-	Vdc
$\begin{aligned} & \text { Reverse Voltage Leakage Current, } \\ & \left(V_{R}=100 \mathrm{Vdc}\right) \\ & \left(V_{R}=25 \mathrm{Vdc}, T_{J}=150^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{R}}=70 \mathrm{Vdc}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C}\right) \end{aligned}$	$I_{\text {R }}$	-	$\begin{aligned} & 1.0 \\ & 30 \\ & 50 \end{aligned}$	$\mu \mathrm{Adc}$
Diode Capacitance, $\left(V_{R}=0, f=1.0 \mathrm{MHz}\right)$	C_{D}	-	1.5	pF
Forward Voltage, $\begin{aligned} & \left(I_{F}=1.0 \mathrm{mAdc}\right) \\ & \left(I_{F}=10 \mathrm{mAdc}\right) \\ & \left(I_{F}=50 \mathrm{mAdc}\right) \\ & \left(I_{F}=150 \mathrm{mAdc}\right) \end{aligned}$	V_{F}	-	$\begin{aligned} & 715 \\ & 855 \\ & 1000 \\ & 1250 \end{aligned}$	mVdc
Reverse Recovery Time, $\left(I_{F}=I_{R}=10 \mathrm{mAdc}, \mathrm{i}_{\mathrm{R}(\mathrm{REC})}=1.0 \mathrm{mAdc}\right) \mathrm{R}_{\mathrm{L}}=100 \Omega$	t_{rr}	-	6.0	ns
Forward Recovery Voltage, $\left(\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}\right)$	$V_{\text {FR }}$	-	1.75	V

CURVES APPLICABLE TO EACH DIODE

Figure 3. Capacitance

SOT-23 (TO-236)
CASE 318-08
ISSUE AS
DATE 30 JAN 2018

SCALE 4:1

NOTES:
IMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
\mathbf{c}	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
$\mathbf{H E}_{\mathbf{E}}$	2.10	2.40	2.64	0.083	0.094	0.104
T	0°	---	10°	0°	---	10°

GENERIC
MARKING DIAGRAM*

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS

XXX = Specific Device Code
M = Date Code

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

[^0] rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

ON Semiconductor:

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

